Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(3): e0297015, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38446822

RESUMO

Gene expression is highly impacted by the environment and can be reflective of past events that affected developmental processes. It is therefore expected that gene expression can serve as a signal of a current or future phenotypic traits. In this paper we identify sets of genes, which we call Prognostic Transcriptomic Biomarkers (PTBs), that can predict firmness in Malus domestica (apple) fruits. In apples, all individuals of a cultivar are clones, and differences in fruit quality are due to the environment. The apples transcriptome responds to these differences in environment, which makes PTBs an attractive predictor of future fruit quality. PTBs have the potential to enhance supply chain efficiency, reduce crop loss, and provide higher and more consistent quality for consumers. However, several questions must be addressed. In this paper we answer the question of which of two common modeling approaches, Random Forest or ElasticNet, outperforms the other. We answer if PTBs with few genes are efficient at predicting traits. This is important because we need few genes to perform qPCR, and we answer the question if qPCR is a cost-effective assay as input for PTBs modeled using high-throughput RNA-seq. To do this, we conducted a pilot study using fruit texture in the 'Gala' variety of apples across several postharvest storage regiments. Fruit texture in 'Gala' apples is highly controllable by post-harvest treatments and is therefore a good candidate to explore the use of PTBs. We find that the RandomForest model is more consistent than an ElasticNet model and is predictive of firmness (r2 = 0.78) with as few as 15 genes. We also show that qPCR is reasonably consistent with RNA-seq in a follow up experiment. Results are promising for PTBs, yet more work is needed to ensure that PTBs are robust across various environmental conditions and storage treatments.


Assuntos
Malus , Humanos , Malus/genética , Frutas/genética , Transcriptoma , Projetos Piloto , Perfilação da Expressão Gênica
2.
G3 (Bethesda) ; 14(3)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38190814

RESUMO

Cultivated pear consists of several Pyrus species with Pyrus communis (European pear) representing a large fraction of worldwide production. As a relatively recently domesticated crop and perennial tree, pear can benefit from genome-assisted breeding. Additionally, comparative genomics within Rosaceae promises greater understanding of evolution within this economically important family. Here, we generate a fully phased chromosome-scale genome assembly of P. communis 'd'Anjou.' Using PacBio HiFi and Dovetail Omni-C reads, the genome is resolved into the expected 17 chromosomes, with each haplotype totaling nearly 540 Megabases and a contig N50 of nearly 14 Mb. Both haplotypes are highly syntenic to each other and to the Malus domestica 'Honeycrisp' apple genome. Nearly 45,000 genes were annotated in each haplotype, over 90% of which have direct RNA-seq expression evidence. We detect signatures of the known whole-genome duplication shared between apple and pear, and we estimate 57% of d'Anjou genes are retained in duplicate derived from this event. This genome highlights the value of generating phased diploid assemblies for recovering the full allelic complement in highly heterozygous crop species.


Assuntos
Malus , Pyrus , Pyrus/genética , Genoma de Planta , Melhoramento Vegetal , Malus/genética , Cromossomos
3.
J Food Prot ; 86(6): 100100, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37150354

RESUMO

Fresh-cut apples, being rich in antioxidants and other nutrients, have emerged as popular snacks in restaurants, at home, and in school lunch programs, partially due to freshness, convenience, and portion size availability. Two major challenges in processing fresh-cut apples are the browning of cut surfaces and contamination with human pathogens. Regarding human pathogens, contamination by Listeria monocytogenes is a major concern, as evidenced by two outbreaks of whole apples and numerous recalls of fresh-cut apples. Antibrowning agents currently used by the industry have little to no antimicrobial properties. The present review discusses the possible origins of L. monocytogenes in fresh-cut apples, including contaminated whole apples, and contamination via the processing environment and the equipment in fresh-cut facilities. Treatment with antibrowning solutions could possibly be an opportunity for Listeria contamination and represents the last chance to inactivate pathogens. The discussion is focused on the antibrowning treatments where formulations and coatings with antibrowning and antimicrobial properties have been developed and evaluated against Listeria and other microorganisms. In addition, several research needs and considerations are discussed to further reduce the chance of pathogen contamination on fresh-cut apples.


Assuntos
Anti-Infecciosos , Listeria monocytogenes , Listeria , Malus , Humanos , Frutas , Microbiologia de Alimentos
4.
J Food Prot ; 85(1): 133-141, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34499733

RESUMO

ABSTRACT: Recent apple-related recall and outbreak events have exposed a need for better food safety controls along the supply chain. Following harvest, apples can be stored under a controlled atmosphere for up to 1 year after harvest before packing and distribution, making the crop susceptible to many opportunities for contamination that increase the quantity of postharvest losses. Botrytis cinerea and Penicillium expansum cause significant rot-associated losses to the apple industry. These fungi can colonize and destroy apple tissue as storage duration increases, which may also impact the growth of saprophytic foodborne pathogens like Listeria monocytogenes. Thus, the objective of this study was to observe population changes of Listeria innocua as a surrogate for L. monocytogenes on apples inoculated with B. cinerea or P. expansum under long-term controlled atmosphere cold storage conditions to identify the effect of postharvest mold growth on growth patterns of a microorganism relevant to food safety. 'Gala' and 'WA 38' apples (n = 1,080) were harvested, treated with pyrimethanil, and inoculated with L. innocua only or with L. innocua and one of the mold species on wounded and unwounded portions of the apple equator. Apples were treated with 1-methylcyclopropene and stored at a controlled atmosphere (2 kPa O2, 1 kPa CO2, 1°C) for 1 week and 1, 3, 6, 9, and 11 months before enumeration. After 3 months, L. innocua consistently fell below the limit of detection (2.35 Log CFU/g), and samples were enriched following a modified Bacteriological Analytical Manual method with PCR confirmation. Listeria persistence was dependent on the storage duration and type of fungal contamination (P ≤ 0.05). Surface wounding may impact these trends, depending on the apple variety. Prevalence of L. innocua was greater in Gala apples. Future studies should more closely examine the interactions on the fruit surface that occur during the seemingly critical time frame of 3 to 6 months in storage.


Assuntos
Listeria , Malus , Atmosfera , Fungos , Malus/microbiologia
5.
Front Plant Sci ; 12: 609684, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34220875

RESUMO

Estimating maturity in pome fruits is a critical task that directs virtually all postharvest supply chain decisions. This is especially important for European pear (Pyrus communis) cultivars because losses due to spoilage and senescence must be minimized while ensuring proper ripening capacity is achieved (in part by satisfying a fruit chilling requirement). Reliable methods are lacking for accurate estimation of pear fruit maturity, and because ripening is maturity dependent it makes predicting ripening capacity a challenge. In this study of the European pear cultivar 'd'Anjou', we sorted fruit at harvest based upon on-tree fruit position to build contrasts of maturity. Our sorting scheme showed clear contrasts of maturity between canopy positions, yet there was substantial overlap in the distribution of values for the index of absorbance difference (I AD ), a non-destructive spectroscopic measurement that has been used as a proxy for pome fruit maturity. This presented an opportunity to explore a contrast of maturity that was more subtle than I AD could differentiate, and thus guided our subsequent transcriptome analysis of tissue samples taken at harvest and during storage. Using a novel approach that tests for condition-specific differences of co-expressed genes, we discovered genes with a phased character that mirrored our sorting scheme. The expression patterns of these genes are associated with fruit quality and ripening differences across the experiment. Functional profiles of these co-expressed genes are concordant with previous findings, and also offer new clues, and thus hypotheses, about genes involved in pear fruit quality, maturity, and ripening. This work may lead to new tools for enhanced postharvest management based on activity of gene co-expression modules, rather than individual genes. Further, our results indicate that modules may have utility within specific windows of time during postharvest management of 'd'Anjou' pear.

6.
BMC Plant Biol ; 18(1): 364, 2018 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-30563450

RESUMO

BACKGROUND: Inconsistent pear fruit ripening resulting from variable harvest maturity within tree canopies can contribute to postharvest losses through senescence and spoilage that would otherwise be effectively managed using crop protectant and storage regimes. Because those inconsistencies are likely based on metabolic differences, non-targeted metabolic profiling peel of 'd'Anjou' pears harvested from the external or internal canopy was used to determine the breadth of difference and link metabolites with canopy position during long-term controlled atmosphere storage. RESULTS: Differences were widespread, encompassing everything from expected distinctions in flavonol glycoside levels between peel of fruit from external and internal canopy positions to increased aroma volatile production and sucrose hydrolysis with ripening. Some of the most substantial differences were in levels of triterpene and phenolic peel cuticle components among which acyl esters of ursolic acid and fatty acyl esters of p-coumaryl alcohol were higher in the cuticle of fruit from external tree positions, and acyl esters of α-amyrin were elevated in peel of fruit from internal positions. Possibly the most substantial dissimilarities were those that were directly related to fruit quality. Phytosterol conjugates and sesquiterpenes related to elevated superficial scald risk were higher in pears from external positions which were to be potentially rendered unmarketable by superficial scald. Other metabolites associated with fruit aroma and flavor became more prevalent in external fruit peel as ripening progressed and, likewise, with differential soluble solids and ethylene levels, suggesting the final product not only ripens differentially but the final fruit quality following ripening is actually different based on the tree position. CONCLUSIONS: Given the impact tree position appears to have on the most intrinsic aspects of ripening and quality, every supply chain management strategy would likely lead to diverse storage outcomes among fruit from most orchards, especially those with large canopies. Metabolites consistently associated with peel of fruit from a particular canopy position may provide targets for non-destructive pre-storage sorting used to reduce losses contributed by this inconsistency.


Assuntos
Armazenamento de Alimentos , Frutas/metabolismo , Redes e Vias Metabólicas , Pyrus/fisiologia , Fitosteróis/metabolismo , Análise de Componente Principal , Pyrus/metabolismo , Sesquiterpenos/metabolismo
7.
J Agric Food Chem ; 66(8): 1800-1806, 2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-29356521

RESUMO

Apple peel is a rich source of secondary metabolites, and several studies have outlined the dietary health benefits of ursane-type triterpenes in apple. Changes in triterpene metabolism have also been associated with the development of superficial scald, a postharvest apple peel browning disorder, and postharvest applications of diphenylamine and 1-methylcyclopropene. Previously, studies have generated metabolite profiles for whole apple peel or apple wax. In this study, we report separate metabolic analyses of isolated wax fractions and peel epidermis to investigate the spatial distribution of secondary metabolites in peel. In addition to examining previously reported triterpenes, we identified several unreported fatty acid esters of ursane-type triterpenes (C14-C22). All free pentacyclic triterpenes and triterpenic acids, with the exception of ß-amyrin, were localized in the wax layer, along with esters of ursolic acid and uvaol. All sterols, sterol derivatives and α-amyrin esters were localized in the dewaxed peel epidermis.


Assuntos
Ésteres/química , Frutas/química , Malus/química , Extratos Vegetais/química , Triterpenos/química , Ésteres/metabolismo , Frutas/metabolismo , Malus/metabolismo , Estrutura Molecular , Extratos Vegetais/metabolismo , Metabolismo Secundário , Triterpenos/metabolismo
8.
BMC Plant Biol ; 17(1): 77, 2017 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-28431510

RESUMO

BACKGROUND: Superficial scald is a physiological disorder of apple fruit characterized by sunken, necrotic lesions appearing after prolonged cold storage, although initial injury occurs much earlier in the storage period. To determine the degree to which the transition to cell death is an active process and specific metabolism involved, untargeted metabolic and transcriptomic profiling was used to follow metabolism of peel tissue over 180 d of cold storage. RESULTS: The metabolome and transcriptome of peel destined to develop scald began to diverge from peel where scald was controlled using antioxidant (diphenylamine; DPA) or rendered insensitive to ethylene using 1-methylcyclopropene (1-MCP) beginning between 30 and 60 days of storage. Overall metabolic and transcriptomic shifts, representing multiple pathways and processes, occurred alongside α-farnesene oxidation and, later, methanol production alongside symptom development. CONCLUSIONS: Results indicate this form of peel necrosis is a product of an active metabolic transition involving multiple pathways triggered by chilling temperatures at cold storage inception rather than physical injury. Among multiple other pathways, enhanced methanol and methyl ester levels alongside upregulated pectin methylesterases are unique to peel that is developing scald symptoms similar to injury resulting from mechanical stress and herbivory in other plants.


Assuntos
Resposta ao Choque Frio , Frutas/metabolismo , Malus/metabolismo , Doenças das Plantas , Hidrolases de Éster Carboxílico/genética , Temperatura Baixa , Ésteres/metabolismo , Armazenamento de Alimentos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Malus/enzimologia , Malus/genética , Metaboloma , Metanol/metabolismo , Doenças das Plantas/genética , Regulação para Cima
9.
Pest Manag Sci ; 73(9): 1837-1845, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28195388

RESUMO

BACKGROUND: Studies were conducted to identify volatiles released by apple foliage untreated or sprayed with a yeast and from untreated and sprayed foliage with actively feeding larvae of Pandemis pyrusana Kearfott. Field studies then evaluated various combinations of these volatiles when paired with acetic acid as possible adult attractants. RESULTS: The most abundant volatiles released following herbivore feeding were four green leaf volatiles (GLVs) and acetic acid. Nineteen volatiles were found to be released in significantly higher amounts from foliage with herbivore damage than from intact leaves. The combination of yeast followed by herbivore injury increased the levels of methyl salicylate and phenylacetonitrile compared with herbivory alone. Levels of acetic acid released were not significantly different among the four treatments. Only phenylacetonitrile and 2-phenylethanol with acetic acid caught similar and significantly more total and female moths than acetic acid alone. Moth catches with 12 other volatiles plus acetic acid were not significantly higher than with acetic acid alone, and were lower than with acetic acid and 2-phenylethanol. CONCLUSION: These data show that herbivore injury does not create a unique chemical signal for adults to locate oviposition or rendezvous sites. Instead, moths may cue to the aromatic-acetic acid combination as a nutritional cue to locate sugary resources. © 2017 Society of Chemical Industry.


Assuntos
Herbivoria , Lepidópteros/efeitos dos fármacos , Malus/metabolismo , Compostos Orgânicos Voláteis/farmacologia , Animais , Diterpenos/metabolismo , Folhas de Planta/metabolismo , Inquéritos e Questionários , Fatores de Tempo , Compostos Orgânicos Voláteis/metabolismo
10.
BMC Genomics ; 17(1): 798, 2016 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-27733113

RESUMO

BACKGROUND: 'Honeycrisp' is an apple cultivar that is susceptible to soft scald, a chilling injury expressed as necrotic patches on the peel. Improved understanding of metabolism associated with the disorder would improve our understanding of soft scald and contribute to developing more effective management strategies for apple storage. It was expected that specific gene expression and specific metabolite levels in the peel would be linked with soft scald risk at harvest and/or specific time points during cold storage. RESULTS: Fruit from nine 'Honeycrisp' apple orchards that would eventually develop different incidences of soft scald between 4 and 8 weeks of cold air storage were used to contrast and determine differential transcriptomic and metabolomic changes during storage. Untargeted metabolic profiling revealed changes in a number of distinct pathways preceding and concurrent with soft scald symptom development, including elevated γ-aminobutryic acid (GABA), 1-hexanol, acylated steryl glycosides, and free p-coumaryl acyl esters. At harvest, levels of sesquiterpenoid and triterpenoid acyl esters were relatively higher in peel of fruit that did not later develop the disorder. RNA-seq driven gene expression profiling highlighted possible involvement of genes and associated metabolic processes with soft scald development. These included elevated expression of genes involved in lipid peroxidation and phenolic metabolism in fruit with soft scald, and isoprenoid/brassinosteroid metabolism in fruit that did not develop soft scald. Expression of other stress-related genes in fruit that developed soft scald included chlorophyll catabolism, cell wall loosening, and lipid transport while superoxide dismutases were up-regulated in fruit that did not develop the disorder. CONCLUSIONS: This study delineates the sequential transcriptomic and metabolomic changes preceding soft scald symptom development. Changes were differential depending on susceptibility of fruit to the disorder and could be attributed to key stress related and mediating pathways.


Assuntos
Metabolismo Energético , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Malus/genética , Malus/metabolismo , Análise por Conglomerados , Perfilação da Expressão Gênica , Metabolômica , Transcriptoma
11.
Physiol Plant ; 153(2): 204-20, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24944043

RESUMO

'Soggy breakdown' (SB) is an internal flesh disorder of 'Honeycrisp' apple (Malus × domestica Borkh.) fruit that occurs during low temperature storage. The disorder is a chilling injury (CI) in which visible symptoms typically appear after several weeks of storage, but information about the underlying metabolism associated with its induction and development is lacking. The metabolic profile of flesh tissue from wholly healthy fruit and brown and healthy tissues from fruit with SB was characterized using gas chromatography-mass spectrometry (GC-MS) and liquid chromatograph-mass spectrometry (LC-MS). Partial least squares discriminant analysis (PLS-DA) and correlation networks revealed correlation among ester volatile compounds by composition and differences in phytosterol, phenolic and putative triacylglycerides (TAGs) metabolism among the tissues. anova-simultaneous component analysis (ASCA) was used to test the significance of metabolic changes linked with tissue health status. ASCA-significant components included antioxidant compounds, TAGs, and phytosterol conjugates. Relative to entirely healthy tissues, elevated metabolite levels in symptomatic tissue included γ-amino butyric acid, glycerol, sitosteryl (6'-O-palmitoyl) ß-d-glucoside and sitosteryl (6'-O-stearate) ß-d-glucoside, and TAGs containing combinations of 16:0, 18:3, 18:2 and 18:1 fatty acids. Reduced metabolite levels in SB tissue included 5-caffeoyl quinate, ß-carotene, catechin, epicatechin, α-tocopherol, violaxanthin and sitosteryl ß-d glucoside. Pathway analysis indicated aspects of primary metabolism differed according to tissue condition, although differences in metabolites involved were more subtle than those of some secondary metabolites. The results implicate oxidative stress and membrane disruption processes in SB development and constitute a diagnostic metabolic profile for the disorder.


Assuntos
Antioxidantes/análise , Temperatura Baixa , Frutas/metabolismo , Metabolismo dos Lipídeos , Malus/citologia , Malus/metabolismo , Fenóis/análise , Análise de Variância , Análise Discriminante , Frutas/citologia , Cromatografia Gasosa-Espectrometria de Massas , Análise dos Mínimos Quadrados , Redes e Vias Metabólicas , Metaboloma , Metabolômica , Transdução de Sinais , Compostos Orgânicos Voláteis/análise
12.
Int J Food Microbiol ; 193: 59-67, 2015 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-25462924

RESUMO

The objective of the present study was to investigate the effectiveness of zein-based coatings in reducing populations of Salmonella enterica serovar Typhimurium and preserving quality of cherry tomatoes. Tomatoes were inoculated with a cocktail of S. Typhimurium LT2 plus three attenuated strains on the smooth skin surface and stem scar area. The zein-based coatings with and without cinnamon (up to 20%) and mustard essential oil or a commercial wax formulation were applied onto tomatoes and the treated fruits were stored at 10 °C for up to 3 weeks. Populations of S. Typhimurium decreased with increased essential oil concentration and storage duration. S. Typhimurium populations on the smooth skin surface were reduced by 4.6 and 2.8 log colony forming units(CFU)/g by the zein coatings with 20% cinnamon and 20% mustard oil, respectively, 5h after coating. The same coating reduced populations of S. Typhimurium to levels below detection limit (1.0 log CFU/g) on the stem scar area of tomato during 7 days of storage at 10 °C. Salmonella populations were not reduced on fruit coated with the commercial wax. All of the coatings resulted in reduced weight loss compared with uncoated control. Compared with the control, loss of firmness and ascorbic acid during storage was prevented by all of the coatings except the zein coating with 20% mustard oil which enhanced softening. Color was not consistently affected by any of the coating treatments during 21 days of storage at 10°C. The results suggest that the zein-based coating containing cinnamon oil might be used to enhance microbial safety and quality of tomato.


Assuntos
Microbiologia de Alimentos/métodos , Conservação de Alimentos/métodos , Frutas/microbiologia , Viabilidade Microbiana , Salmonella typhimurium/crescimento & desenvolvimento , Solanum lycopersicum/microbiologia , Anti-Infecciosos/farmacologia , Cinnamomum zeylanicum/química , Contagem de Colônia Microbiana , Frutas/normas , Mostardeira , Óleos Voláteis/farmacologia , Óleos de Plantas/farmacologia , Salmonella typhimurium/efeitos dos fármacos , Zeína/farmacologia
13.
J Agric Food Chem ; 62(7): 1741-54, 2014 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-24502565

RESUMO

Apple (Malus domestica Borkh.) fruit volatile production is regulated by a variety of factors including low oxygen storage conditions. This study examined the impact of low pO2 controlled atmospheres on 'Scarlett Spur Red Delicious' apple volatile production and disorder development. Accumulation of apple volatile compounds was characterized during long-term cold storage at 0.5 °C in air or low pO2 (0.3, 0.8, or 1.5 kPa) with 1 kPa CO2. Volatile accumulation differed quantitatively with pO2 as acetaldehyde, ethanol, and ethyl ester accumulation increased with decreased pO2 during the first weeks in storage. Differences in volatile accumulation among atmospheres were evident through 6 months. The rate of ethanol accumulation increased with decreased pO2 and could potentially be used to monitor low O2 stress. Incidence of low oxygen disorders after 9 months was highest in fruit held at the lowest pO2. The sesquiterpene α-farnesene was not detected throughout the storage period.


Assuntos
Armazenamento de Alimentos/métodos , Frutas/química , Malus/química , Compostos Orgânicos Voláteis/análise , Acetaldeído/análise , Temperatura Baixa , Ésteres/análise , Etanol/análise , Armazenamento de Alimentos/instrumentação , Frutas/crescimento & desenvolvimento , Malus/crescimento & desenvolvimento , Oxigênio/análise
14.
J Agric Food Chem ; 61(6): 1373-87, 2013 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-23311914

RESUMO

The transition from cold storage to ambient temperature alters apple quality through accelerated softening, flavor and color changes, and development of physiological peel disorders, such as superficial scald, in susceptible cultivars. To reveal global metabolism associated with this transition, the 'Granny Smith' peel metabolome was evaluated during storage of 6 months and shelf life periods. Treatment with the antioxidant diphenylamine (DPA) reduced scald, creating a metabolic contrast with untreated fruit, which developed superficial scald. Superficial scald symptoms developed on control fruit after 120 days of storage, and symptoms progressed following transition to ambient-temperature shelf life. The metabolic profile of control and DPA-treated fruit was divergent after 30 days of cold storage due to differing levels of α-farnesene oxidation products, methyl esters, phytosterols, and other compounds potentially associated with chloroplast integrity and oxidative stress response. Hierarchical cluster analysis revealed coregulation within the volatile synthesis pathway including control of the availability of methyl, propyl, ethyl, acetyl, and butyl alcohol and/or acid moieties for ester biosynthesis. Overall, the application of metabolomics techniques lends new insight into physiological processes leading to cell death and ripening processes that affect fruit flavor, appearance, and overall quality.


Assuntos
Antioxidantes/farmacologia , Membrana Celular/efeitos dos fármacos , Parede Celular/efeitos dos fármacos , Conservação de Alimentos/métodos , Frutas/efeitos dos fármacos , Malus/efeitos dos fármacos , Compostos Orgânicos Voláteis/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Parede Celular/química , Parede Celular/metabolismo , Armazenamento de Alimentos , Frutas/química , Frutas/metabolismo , Malus/química , Malus/metabolismo , Temperatura , Compostos Orgânicos Voláteis/química
15.
Phytochemistry ; 72(11-12): 1328-40, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21665233

RESUMO

The chilling conditions of apple cold storage can provoke an economically significant necrotic peel disorder called superficial scald (scald) in susceptible cultivars. Disorder development can be reduced by inhibiting ethylene action or oxidative stress as well as intermittent warming. It was previously demonstrated that scald is preceded by a metabolomic shift that results in altered levels of various classes of triterpenoids, including metabolites with mass spectral features similar to ß-sitosterol. In this study, a key class of phytosterol metabolites was identified. Changes in peel tissue levels of conjugates of ß-sitosterol and campesterol, including acylated steryl glycosides (ASG), steryl glycosides (SG) and steryl esters (SE), as well as free sterols (FS), were determined during the period of scald development. Responses to pre-storage treatment with the ethylene action inhibitor, 1-methylcyclopropene, or an antioxidant (diphenylamine), rapid temperature elevation, and cold acclimation using intermittent warming treatments were evaluated. Diphenylamine, 1-MCP, and intermittent warming all reduced or prevented scald development. ASG levels increased and SE levels decreased in untreated control fruit during storage. Removing fruit from cold storage to ambient temperature induced rapid shifts in ASG and SE fatty acyl moieties from unsaturated to saturated. FS and SG levels remained relatively stable during storage but SG levels increased following a temperature increase after storage. ASG, SE, and SG levels did not increase during 6 months cold storage in fruit subjected to intermittent warming treatment. Overall, the results show that apple peel phytosteryl conjugate metabolism is influenced by storage duration, oxidative stress, ethylene action/ripening, and storage temperature.


Assuntos
Etilenos/metabolismo , Frutas/metabolismo , Malus/metabolismo , Estresse Oxidativo , Fitosteróis/metabolismo , Aclimatação , Antioxidantes/farmacologia , Ciclopropanos/farmacologia , Difenilamina/farmacologia , Etilenos/antagonistas & inibidores , Conservação de Alimentos/métodos , Frutas/efeitos dos fármacos , Malus/efeitos dos fármacos , Fitosteróis/análise , Fitosteróis/química , Doenças das Plantas/prevenção & controle , Sitosteroides/metabolismo , Temperatura
16.
J Food Prot ; 72(12): 2453-60, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20003725

RESUMO

Whole cantaloupes either not inoculated or inoculated with Salmonella Poona were submerged in water, 180 ppm of chlorine, acidified calcium sulfate (ACS: 1.2% Safe(2)O-ACS50), 1,000 ppm of acidified sodium chlorite (ASC), 80 ppm of peroxyacetic acid (PAA), and a combination of ACS and PAA for 10 min. Although only ASC and the combination of ACS and PAA significantly reduced the aerobic plate count of samples taken from the surface of whole cantaloupe (compared with samples taken from cantaloupe submerged in water only), all treatments reduced yeast and mold counts on the whole cantaloupe. However, none of the treatments of whole cantaloupes consistently reduced yeast and mold counts for the samples of fresh-cut cantaloupes. The aerobic plate counts for fresh-cut cantaloupe were reduced by 1 to 2 log CFU/g by sanitization of whole fruit with ASC, ACS, and the combination of ACS and PAA. The low bacterial population on the fresh-cut fruit was maintained during 14 days of storage at 4 degrees C. All treatments had a limited effect on the population of Salmonella, achieving no more than a 1.5-log reduction of the pathogen inoculated on the surface of the whole cantaloupes. Salmonella was nondetectable via direct plating (with a detection limit of 0.4 log CFU/g) in fresh-cut cantaloupes prepared from whole cantaloupes treated with any of the sanitizers. However, after enrichment, Salmonella often was detectable. Color, texture, soluble solids, pH, ascorbic acid, and drip loss of cut cantaloupes were not consistently affected by any of the whole-fruit treatments. Overall, treatments of whole cantaloupe with ASC, ACS, and the combination of ACS and PAA at the concentrations tested permitted a significant reduction in Salmonella and native microflora of whole and cut fruit; however, Salmonella still could be found in cut cantaloupes from all treatments.


Assuntos
Cucumis melo/microbiologia , Desinfetantes/farmacologia , Manipulação de Alimentos/métodos , Microbiologia de Alimentos/normas , Frutas/microbiologia , Qualidade de Produtos para o Consumidor , Fungos/efeitos dos fármacos , Salmonella/efeitos dos fármacos
17.
J Agric Food Chem ; 57(18): 8459-66, 2009 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-19715334

RESUMO

Untargeted metabolic profiling was employed to characterize metabolomic changes associated with 'Granny Smith' apple superficial scald development following 1-MCP or DPA treatment. Partial least-squares discriminant analyses were used to link metabolites with scald, postharvest treatments, and storage duration. Models revealed metabolomic differentiation between untreated controls and fruit treated with DPA or 1-MCP within 1 week following storage initiation. Metabolic divergence between controls and DPA-treated fruit after 4 weeks of storage preceded scald symptom development by 2 months. alpha-Farnesene oxidation products with known associations to scald, including conjugated trienols, 6-methyl-5-hepten-2-one, and 6-methyl-5-hepten-2-ol, were associated with presymptomatic as well as scalded control fruit. Likewise, a large group of putative triterpenoids with mass spectral features similar to those of ursolic acid and beta-sitosterol were associated with control fruit and scald. Results demonstrate that extensive metabolomic changes associated with scald precede actual symptom development.


Assuntos
Temperatura Baixa/efeitos adversos , Conservação de Alimentos/métodos , Frutas/metabolismo , Malus , Metabolômica , Antioxidantes , Ciclopropanos/administração & dosagem , Difenilamina/administração & dosagem , Frutas/química , Estresse Oxidativo , Fatores de Tempo
18.
J Agric Food Chem ; 56(9): 3381-5, 2008 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-18380463

RESUMO

Diphenylamine metabolism and ethylene action were evaluated as factors influencing the development of 'Braeburn' apple internal browning and cavitation during cold storage. Apples treated with the antioxidant diphenylamine (DPA) and/or the ethylene action inhibitor 1-methylcyclopropene (1-MCP) were held at 1 degrees C for up to 6 months in air or a controlled atmosphere (CA) containing 1 kPa of O2 and 3 kPa of CO2. Cortex tissues from fruit without disorders as well as from symptomatic and asymptomatic areas of fruit with disorders were analyzed for DPA and DPA derivative content. Internal browning and cavities developed in control and 1-MCP-treated fruit stored in CA, whereas air-stored and CA fruit treated with DPA or with DPA and 1-MCP prior to storage did not develop disorders. Depending on the storage regimen and duration, less DPA was detected in 1-MCP-treated fruit. The 4-hydroxydiphenylamine (4OHDPA) content of control fruit decreased during air storage duration but increased between 2 and 4 months in CA storage. 4OHDPA content in 1-MCP-treated fruit increased with storage duration in CA but not air. N-Nitrosodiphenylamine (NODPA) was detected after 2 months in control fruit stored in air or CA and in 1-MCP-treated fruit stored in CA, and NODPA content in control fruit was higher compared to that in 1-MCP-treated fruit. Accumulation of 4-methoxydiphenylamine (4MeODPA) in control fruit stored in air increased with storage duration, but 4MeODPA content did not change in 1-MCP-treated fruit stored in air or CA. 2-Nitrodiphenylamine content was reduced by prestorage treatment with 1-MCP, but storage environment and duration had no effect on its accumulation. The results indicate that CA storage increases the risk of disorder development in 'Braeburn' apples, that DPA can prevent disorder development, and that the content of DPA and DPA derivatives is influenced by storage environment and ethylene action. A clear relationship between DPA derivative formation and storage conditions that promote internal browning was not apparent.


Assuntos
Difenilamina/metabolismo , Conservação de Alimentos/métodos , Frutas/metabolismo , Reação de Maillard , Malus/metabolismo , Ciclopropanos/administração & dosagem , Difenilamina/administração & dosagem , Etilenos/antagonistas & inibidores , Nitrosaminas/análise
19.
J Agric Food Chem ; 56(3): 1138-47, 2008 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-18167073

RESUMO

Global metabolic profiling of 'Granny Smith' apple peel was employed for evaluating metabolomic alterations resulting from prestorage UV-white light irradiation. Apples were bagged midseason to restrict sunlight, harvested at the preclimacteric stage prior to bag removal, treated with fluorescent UV-white light for 0-48.5 h, and stored for 6 months at 0 degrees C. Trimethylsilyl (oxime) derivatized or underivatized aliquots of methanolic extracts from peel samples collected immediately after irradiation or following cold storage were evaluated using GC-MS and LC-UV/vis-MS, respectively. The profile, including more than 200 components, 78 of which were identified, revealed changes in the metabolome provoked by UV-white light irradiation and cold storage. Analyses of individual components selected using principal component analysis (PCA) models showed distinct temporal changes, before and after cold storage, related to prestorage irradiation in a diverse set of primary and secondary metabolic pathways. The results demonstrate metabolic pathways associated with ethylene synthesis, acid metabolism, flavonoid pigment synthesis, and fruit texture, are altered by prestorage irradiation, and many of the alterations are detectable after 6 months of cold storage in air.


Assuntos
Conservação de Alimentos , Frutas/metabolismo , Luz , Malus/metabolismo , Raios Ultravioleta , Frutas/efeitos da radiação , Cromatografia Gasosa-Espectrometria de Massas , Malus/efeitos da radiação , Extratos Vegetais/química
20.
J Food Prot ; 69(4): 912-9, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16629038

RESUMO

Improvements in methods for disinfecting fresh-cut cantaloupe could reduce spoilage losses and reduce the risk of foodborne illness from human pathogen contamination. The objective of this study was to investigate the feasibility of using hot-water treatment in combination with low-dose irradiation to reduce native microbial populations while maintaining the quality of fresh-cut cantaloupe. Whole cantaloupes were washed in tap water at 20 or 76 degrees C for 3 min. Fresh-cut cantaloupe cubes, prepared from the washed fruit, were then packaged in clamshell containers, and half the samples were exposed to 0.5 kGy of gamma radiation. Native microflora populations and sensory qualities were evaluated during the subsequent 7 days of storage at 4 degrees C. The hot-water surface pasteurization reduced the microflora population by 3.3 log on the surface of whole fruits, resulting in a lower microbial load on the fresh-cut cubes compared with cubes cut from fruit treated with cold water. Irradiation of cubes prepared from untreated fruit to an absorbed dose of 0.5 kGy achieved a low microbial load similar to that of cubes prepared from hot-water-treated fruit. The combination of the two treatments was able to further reduce the microflora population. During storage, the headspace atmosphere of the packages was not significantly influenced by any of the treatments. Color, titratable acidity, pH, ascorbic acid, firmness, and drip loss were not consistently affected by treatment with irradiation, hot water, or the combination of the two. Cubes prepared from hot-water-treated whole fruit had slightly lower soluble solids content. The combination of hot-water pasteurization of whole cantaloupe and low-dose irradiation of packaged fresh-cut melon can reduce the population of native microflora while maintaining the quality of this product.


Assuntos
Bactérias/efeitos dos fármacos , Bactérias/efeitos da radiação , Cucumis melo , Desinfecção/métodos , Irradiação de Alimentos , Conservação de Alimentos/métodos , Bactérias/crescimento & desenvolvimento , Comportamento do Consumidor , Qualidade de Produtos para o Consumidor , Cucumis melo/efeitos dos fármacos , Cucumis melo/microbiologia , Cucumis melo/efeitos da radiação , Raios gama , Humanos , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...